1) Foundations
Absolute basics through core language features and beginner projects.
Basics
- Python Shell, Math, Logical Operations
- Basic Syntax; Print & Formatting
- Variables & Typecasting
- Data Types (Numbers, Strings)
- Lists: creation, slicing, common operations
- Tuples
- Sets (intro)
- Dictionaries
- Booleans; Truthy/Falsy
- Conditionals (if/elif/else)
- Loops (for/while); Nested loops
- String ↔ List commonalities
- Functions (basics)
- Exceptions (intro)
Practice & Tools
- Loop exercises & print patterns
- PyCharm shortcuts & debugging
- Unicode (e.g., Devanagari) (bonus)
- Math curriculum exercises
- Turtle programming
2) Object‑Oriented Programming (OOP)
- OOP Fundamentals
- Classes & Objects
- Methods (incl. dunder methods)
- Inheritance & composition
3) Data Structures & Algorithms (DSA)
Core Structures
- Arrays & Linked Lists
- Stacks & Queues
- Heaps / Priority Queues
- Hash Tables
- Binary Search Trees
Core Techniques
- Recursion
- Searching & Sorting (selection, insertion, merge, quick)
4) Package Management
- PyPI
pip
conda
5) Advanced Python
Language Power‑Ups
- Functions: arguments (*args, **kwargs, defaults), scope
- List Comprehensions
- Generators & Iterators
- Lambdas & Expressions
- Decorators
- Regex
- Datetime
Working with the System
- OS & File Structure
- File Handling (read/write, CSV/JSON)
- Important Standard/3rd‑party Modules
- Virtual Environments & Paradigms
6) Web Frameworks
- Django
- Flask
- FastAPI
- Tornado
7) Automation
- File Manipulation & OS tasks
- Web Scraping
- GUI Automation
- Network Automation
- Automated Email Sender
- Getting Data from APIs
8) Testing
- Unit Testing
- Integration Testing
- End‑to‑End Testing
- Test‑Driven Development (TDD)
9) Data Science & Machine Learning
Core Stack
- NumPy
- Pandas (Spreadsheets)
- Matplotlib (Graphs & Maps)
- Seaborn
- Scikit‑Learn
ML Frameworks & Data
- TensorFlow
- PyTorch
- SQL Databases (MySQL)
Start Learning